

Miscellaneous Exercise Question Bank

1.(D)
$$C_3H_8 + 5O_2 \longrightarrow 3CO_2 + 4H_2O$$

3 moles of
$$CO_2 \longrightarrow 4$$
 moles of H_2O

0.15 moles of
$$CO_2 \longrightarrow \frac{4}{3} \times 0.15$$
 moles of H_2O

= 0.2 moles of
$$H_2O = 0.2 \times N_A$$
 molecules of water

No. of drops formed =
$$\frac{0.2 \times 6.022 \times 10^{23}}{1.7 \times 10^{21}} = 70$$

2.(A)
$$Ca(OH)_2 + (NH_4)_2 SO_4 \longrightarrow CaSO_4 + 2NH_3 + 2H_2O$$
Excess 50 mol

50 mol 100 mol 100 mol

Density of sol = 0.85 g/ml

Let solution be 100 g.

Then volume =
$$\frac{100}{0.85}$$
 ml = 117.64

Molarity
$$\frac{20}{17} \times 1000 = 10 \,\text{M}$$
 \Rightarrow 10 L of such solution can be prepared.

3.(B) Al(OH) $_3$: it will neutralize large amount of acid for a smaller amount than the other antacids.

4.(B)
$$M + 3F_2 \longrightarrow MF_6$$

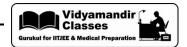
$$\frac{0.25}{M} = \frac{0.547}{M + (19)(6)}$$

$$M = 95.95$$

:. M should be molybdenum.

5.(B)
$$U(s) + 3F_2(g) \longrightarrow UF_6(g)$$

$$\frac{n_{F_2}}{3} = n_{uF_6}$$


$$n_{F_2} = \frac{3 \times 2 \times 10^{-3}}{352} = 0.0170$$

Molecules of
$$F_2$$
 required = $n_{F_2} \times N_A \approx 1.026 \times 10^{19}$

6.(C)
$$H_2S + \frac{3}{2}O_2 \longrightarrow H_2O + SO_2$$

Oxygen used
$$=\frac{3}{2} \times \frac{51}{31} = 72 \text{ grams}$$

Mass of products formed = Mass of reactants = 51 + 72 = 123 g

7.(A)
$$B_2Cl_4 + 6NaOH \longrightarrow 2NaBO_2 + 2H_2O + H_2 + 4NaCl$$

1 mole of $H_2 \longrightarrow 1$ mole of B_2Cl_4

$$\frac{1.362}{22.4}$$
 mole of $H_2 \longrightarrow \frac{1.362}{22.4}$ mole of B_2Cl_4

$$\frac{1.362}{22.4} \times 164 \,\mathrm{g}$$
 of $B_2 Cl_4 = 9.97 \,\mathrm{g}$

8.(A) 2 mol of
$$NH_4NO_3 \longrightarrow 7$$
 moles of gaseous products

$$\frac{16}{80}$$
 mole of $NH_4NO_3 \longrightarrow \frac{7}{2} \times \frac{16}{80}$ of gaseous products

$$pV = nRI$$

$$1 \times V = \frac{7}{10} \times 0.0821 \times 10^{3} \quad \Rightarrow \quad V = 57.47 L$$

9.(A)
$$\operatorname{FeCl}_{v} + \operatorname{y} \operatorname{Ag} \operatorname{NO}_{3} \longrightarrow \operatorname{yAgCl} + \operatorname{Fe}(\operatorname{NO}_{3})\operatorname{y}$$

$$\frac{n_{AgCl}}{v} = n_{FeCly}$$

$$\frac{287 \times 10^{-3}}{143.5} \times \frac{1}{y} = \frac{127 \times 10^{-3}}{56 + y(35.5)} \qquad \Rightarrow \qquad y = 2$$

10.(A) 1 mole of
$$(CF_2)_n \longrightarrow 4n$$
 moles of CoF_2

$$\frac{10^3}{\text{n(50)}}$$
 of $(\text{CF}_2)_{\text{n}} \longrightarrow \frac{4\text{n}(10^3)}{\text{n(50)}}$ moles of CoF_3

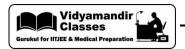
$$\longrightarrow$$
 80 moles of CoF₃

$$\longrightarrow$$
 40 moles of F_2

$$\longrightarrow 40 \times 38 \, \text{g of } F_2$$

$$= 1520 \text{ g of } F_2$$

11.(C)
$$\frac{9}{4}$$
A + 2BO₃ $\longrightarrow \frac{3}{4}$ A₃O₄ + B₂O₃


$$9A + 8BO_3 \longrightarrow 3A_3O_4 + 4B_2O_3$$

12.(B) The amount of tin present in the SnO_2 is the amount of tin that was in the original sample.

Tin in
$$SnO_2 = 0.5 \times \frac{119}{(119 + 92)} = 0.39 g$$

% Tin in original sample
$$\frac{0.39}{1.5} \times 100 = 26.27\%$$

Solutions | Workbook-1 7 Stoichiometry-l

13.(C) A + 2B
$$\longrightarrow$$
 I, I + C \longrightarrow D + B

$$\Rightarrow$$
 A + 2B + C \longrightarrow D + B

$$\Rightarrow$$
 A + B + C \longrightarrow D

14.(C)
$$4NH_3 + 5O_2 \longrightarrow 4NO + 6H_2O$$

$$\frac{25.5}{17}$$
 Excess

-
$$\frac{25.5}{17}$$
 moles $\frac{25.5}{17} \times \frac{6}{4}$ moles

$$2 \text{NO} \ + \ 2 \text{CH}_4 \ \longrightarrow \ 2 \text{HCN} \ + \ 2 \text{H}_2 \text{O} \ + \ \text{H}_2$$

Initial moles
$$\frac{25.5}{17} \quad \frac{32}{16}$$

Final moles
$$-$$
 0.5 \longrightarrow 1.5

1.5
$$\frac{1}{2}$$

HCN produced = $1.5 \times 27 g = 40.5 g$

15.(B) Let the mass of extract is 100 grams

Then
$$SiO_2$$
 found = $x1.52 g = \frac{1.52}{60} x$ moles = $0.0253x$

$$Al_2O_3$$
 found = $x1.02$ g = $\frac{1.02}{1.02}$ x moles = 0.01 x

Koolin is 2SiO2.Al2O3

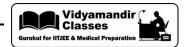
Now the amount of Al_2O_3 flown from Kaolin is half the amount of $3iO_2$ flown from Kaolin in moles.

$$\Rightarrow$$
 free SiO_2 in rock being analysed = $0.0253x - 0.02x = 0.0053x$ moles = 0.32 grams

Weight of rock being analysed = 100x - 1.02x - (0.02)(60)x = 100x - 1.02x - 1.2x = 97.78x grams

% free
$$SiO_2$$
 in being analysed = $\frac{0.32}{97.78} \times 100 = 0.32\%$

16.(C) FeO: $Fe_2O_3 = 2:1 = 2x:1x$. (Initially)


After oxidation 2FeO +
$$\frac{1}{2}$$
O₂ \longrightarrow Fe₂O₃

$$FeO : Fe_2O_3 = 132$$

Let y moles of FeO be oxidized

Then
$$\frac{2x-y}{\frac{y}{2}+x} = \frac{1}{2}$$
 \Rightarrow $3x = \frac{5y}{2}$

FeO moles oxidized per mole of initial mixture $=\frac{y}{3x} = \frac{2}{5} = 0.4$

17.(B)
$$C + O \longrightarrow CO$$

For no residue C should be the limiting reagent

$$\Rightarrow$$
 $n_C < n_O$

$$\frac{x}{12} < \frac{y}{16}$$

$$1.33 < \frac{y}{x}$$

18.(D) CaCN₂ + 3H₂O
$$\longrightarrow$$
 CaCO₃ + 2NH₃ H₂O is limiting reagent.

 \Rightarrow 1 mole of NH₄OH was formed

 \Rightarrow 1 mole of NH₃ was formed

$$N_2 + 3H_2 \longrightarrow 2NH_3$$

$$x_{H_2} = \frac{5}{6}$$

20.(A)
$$I_2 + H_2S \longrightarrow 2HI + S$$

Initial moles
$$0.02 \frac{1}{50}$$

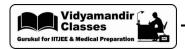
S formed is 0.64 grams

21.(B) 1 mole of
$$K_2CO_3 \longrightarrow \frac{1}{12}$$
 moles of $K_2Zn_3[Fe(CN)_6]_2$

0.2 mole of
$$K_2CO_3 \longrightarrow \frac{1}{60}$$
 moles of $K_2Zn_3[Fe(CN)_6]$

So,
$$\longrightarrow \frac{1}{60} \times 696.2$$
 grams of $K_2 Zn_3 [Fe(CN)_6] = 11.6$ g

22.(A) 1 moles of cyclohexanol give
$$\rightarrow$$
 1 mole of cyclohexene


But the yield being 75 %

Moles of cyclohexane obtained = 0.75 moles = $82 \times \frac{3}{4}$ g = 61.5 g

23.(B) Cu + O
$$\longrightarrow$$
 CuO

Initial moles
$$\frac{4}{64}$$
 + Excess

Final moles
$$\frac{4}{64}$$
 - x + Excess

Final weight
$$\left(\frac{4}{64} - x\right) 64 + \text{Excess}$$
 (x) 80

$$4 + 16x = 4.9g$$

$$x = \frac{0.9}{16}$$
 \Rightarrow Amount of Cu left $= \left(\frac{4}{64} - x\right) 64 = 4 - 64 \times 0.9 = 4 - 3.6 = 0.4 g$

% copper unoxidized = $\frac{0.4}{4} \times 100 = 10\%$

$$24. \text{(A)} \qquad \qquad \text{CH}_{4(g)} \ + \ 3 \, \text{Cl}_{2(g)} \ \longrightarrow \ \text{CHCl}_{3(g)} \ + \ 3 \text{HCl}_{(g)}$$

Ideal:

1

Actual: 1

0.75

$$\therefore \qquad \frac{n_{CHCl_3}}{n_{CH_4}} = 0.75 \quad \text{for the given case}$$

$$\left(\frac{w_{CHCl_3}}{\overset{\circ}{M_{CHCl_3}}}\right) = \frac{3}{4} \left(\frac{w_{CH_4}}{\overset{\circ}{M_{CH_4}}}\right)$$

$$\left(\frac{30}{119.5}\right) = \frac{3}{4} \left(\frac{w_{CH_4}}{16}\right)$$

$$w_{CH_4(g)} = \frac{64 \times 10}{119.5} = \frac{640}{119.5} = 5.36 g$$

25.(D) Mass of pure
$$CaCO_3 = 200 \times \frac{95}{100} = 190 \text{ kg}$$

$$\text{CaCO}_{3} \xrightarrow{\quad \Delta \quad} \text{CaO} + \text{CO}_{2}$$

56

1g -

190 kg
$$\frac{56}{100} \times 190 \text{ kg} = 106.4 \text{ kg}$$

26.(A) Let
$$CH_4$$
 be x gm in the 12 g sample

$$CH_4 \xrightarrow{O_2} CO_2 + 2H_2O$$

$$\frac{x}{16}$$

$$\frac{{\rm C_2H_4}}{\frac{12-x}{28}} \xrightarrow{{\rm CO_2}} 2{\rm CO_2} + 2{\rm H_2O}$$

$$2 \times \frac{(12-x)}{28}$$

Mean molar mass =
$$\frac{12}{\frac{6.4}{16} + \frac{5.6}{2.8}} = 20$$

27.(B) Ratio =
$$\frac{\left(x + \frac{y}{4}\right)}{x} = 1 + \frac{y}{4x}$$

For alkene y = 2x

Hence ratio is free from x.

Initially total volume = 2x

Final total volume = $x + \frac{4x}{5}$

$$\therefore \quad \text{Decrease} = \frac{x}{5}$$
Fraction decrease = $\frac{\frac{x}{5}}{2x} = 0.1$

29.(C) With 80% yield in the reaction moles of $(CO_{(g)} + CO_{2(g)})$ obtained by dehydration of 5 moles of the oxalic acid, are (4 + 4) = 8.

$$P = \frac{nRT}{V} = \frac{8 \times 24.60}{10} = 8 \times 2.46 = 19.68 \text{ atm}$$

30.(B) In reaction (A)
$$\frac{n_{CaO}}{n_{CaCO_3}} = 1 \; ; \; \frac{\frac{w_{CaO}}{56}}{\frac{w_{CaCO_3}}{100}} = 1 \; , \; \text{put } \; w_{CaCO_3} = 1g$$

$$w_{CaO} = \frac{56}{100} = 0.56 \; g \; \; \text{(per g of CaCO_3)}$$

$$\frac{\text{WCaO} - \frac{1}{100} - 0.30 \text{ g}}{100} \text{ ther g of Cacc}}{100}$$
In reaction (B)
$$\frac{\text{WP.O.P.}}{145} = \frac{\text{WGypsum}}{154}$$

$$w_{P.O.P.} = \left(\frac{145}{154}\right) = 0.94 g$$

In reaction (C)
$$\frac{\text{W}_{\text{CaCl}_2}}{111} = \frac{\text{W}_{\text{CaCl}_2} \cdot 6 \text{H}_2\text{O}}{(111 + 108)}$$

$$w_{CaCl_2} = \frac{111}{219} \approx 0.50 g$$

In reaction (D)
$$\frac{w_{NaNO_2}}{69} = \frac{w_{NaNO_3}}{85}$$
$$w_{NaNO_2} = \frac{69}{85} = 0.81g$$

$$\textbf{31.(C)} \quad nf_1 \times M_1 \times V_1 = nf_2 \times n_2$$


$$1 \times 80 \times 10^{-3} \times 3 = 3 \times \frac{2.6}{0.1} \times \frac{V_2}{78}$$

$$V_2 = 0.24\,L = 240\,ml$$

32.(D) Total moles of $H_2SO_4 = 0.01$ mole

Total volume =
$$\frac{150 + 400}{1.25} = \frac{500}{1.25} = 440$$

$$M = \frac{0.1}{440} \times 1000 = \frac{1}{4.4} = 0.227 \,\text{M}$$

moles of succinic acid =
$$\frac{23.6}{118}$$
 = 0.2

Moles of acetic acid = $0.1 \times 0.1 = 0.05$

Moles of ^-COOH in the solution = $(0.2) \times 2 + 0.05 = 0.45$

Molarity =
$$\frac{0.45}{500} \times 1000 = 0.9 \,\text{M}$$

34.(A)
$$pV = nRT$$

V = 200n

Vol of 1 mol = 200 n

$$[CCl_3F] = \frac{275 \times 10^{-12}}{200} = 1.375 \times 10^{-12} \text{ mol / L}$$

$$[\text{CCl}_2\text{F}_2] = \frac{605 \times 10^{-12}}{200} = 3.025 \times 10^{-12} \text{ mol / L}$$

$$\textbf{35.(A)} \quad M_1 \times V_1 = M_2 \times V_2$$

$$1 \times 1 = M_2 \times 5$$
 \Rightarrow $M_2 = 0.2 \text{ M}$

$$M'_{avg} = 25 \times 2 = 50$$

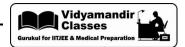
In option A: M_{Avg}^{o} is between 20 and 40

In option B : M_{Avg}^{o} is between 60 and 80

In option $C: M_{Avg}^{o}$ is between 40 and 60

In option D: $M^{\circ} = 20$

37.(A) Let wt. of NH_4NO_3 and $(NH_4)_2HPO_4$ are x and y gram respectively


$$\frac{\frac{x}{80} \times 2 \times 14 + \frac{y}{132} \times 2 \times 14}{x + y} \times 100 = 30.4 \quad \Rightarrow \quad x : y = 2 : 1$$

38.(A) Let V mL of alcohol be required

: mass of alcohol is same in both solutions

$$\therefore \frac{75}{100} \times 0.8 \times V = \frac{30}{100} \times 0.9 \times 150 \implies V = 67.5 \,\text{mL}$$

39.(A) Since, phenolphthalein indicates conversion of Na_2CO_3 into $NaHCO_3$ only hence, x mL, of HCl will be further required to convert $NaHCO_3$ to H_2CO_3 . So, total volume of HCl required to convert Na_2CO_3 into $H_2CO_3 = x + x = 2x$ mL

40.(D) In presence of phenolphthalein
$$\left({{\rm Na_2CO_3} + \ NaHCO_3} \atop {\rm 50\%} \right)$$
 No reaction

$$\frac{1}{2}$$
eq. of Na₂CO₃ = eq. of HCl

$$\frac{1}{2} \times \frac{x}{106} \times 2 = \frac{10 \times 0.01}{1000}$$

$$x = 0.0106$$

% of
$$Na_2CO_3 = \frac{0.0106}{0.1} \times 100 = 10.6$$

41.(C) Phenolphthalein gives the end point corresponding to the reactions :

$$NaOH + HCl \longrightarrow NaCl + H_2O$$

$$Na_2CO_3 + HCl \longrightarrow NaHCO_3 + NaCl$$

$$=$$
 m-moles of HCl $=$ 2.5

Methyl orange gives the end point corresponding to the reactions:

$$NaOH + HCl \longrightarrow NaCl + H_2O$$

$$Na_2CO_3 + 2HCl \longrightarrow 2NaCl + CO_2 + H_2O$$

$$\therefore$$
 m-moles of NaOH + m-moles of Na₂CO₃ × 2 = m-moles of HCl = 30 × 0.1 = 3

m-moles of
$$Na_2CO_3 = 0.5$$

m-moles of NaOh =
$$2.5 - 0.5 = 2$$

Ratio of m-moles of NaOH and
$$Na_2CO_3 = \frac{2}{0.5} = 4:1$$

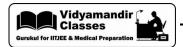
42.(D) 9.8% H₂SO₄ solution; Molarity =
$$\frac{10 \times 9.8}{98} = 1M$$

4.9% H₂SO₄ solution of density 1.1 g/ml, molarity =
$$\frac{10 \times 49 \times 1.1}{98} = 0.55 \text{ M}$$

$$[\text{H}_2\text{SO}_4]_f = \frac{\text{M}_1\text{V}_1 + \text{M}_2\text{V}_2}{\text{V}_1 + \text{V}_2} = \frac{1 \times 1 + 0.55 \times 2}{3} = \frac{2.1}{3.0} = 0.7\,\text{M}$$

43.(C) Milli-equivalents of
$$Ca^{2+}$$
 + milli-equivalents of Mg^{2+} = milli-equivalents of Na_2CO_3

$$= \frac{20}{20} + \frac{12}{12} = V \times 2$$


$$\therefore$$
 V = 1 mL for 1 L of tap water

For 5000 L of pond water

$$V = 5000 \text{ mL or } 5L$$

$$\therefore$$
 E.F. of the compound is $C_{21}H_{30}O_2$

Hence
$$M^{\circ}$$
 of the compound = $21 \times 12 + 30 \times 1 + 2 \times 16 = 314$

45.(D) Dalton's law is valid for a mixture of Non-reacting gases only. Avogadro's number was not given by

Avogadro. Using the formula
$$M = \frac{1000 \, md}{1000 + m \, M^o}$$

Put
$$m = 1, d = 1.5, M^{\circ} = 98$$

$$M = \frac{1500}{1000 + 98}$$

$$M = \frac{1500}{1098} > 1$$

46.(BCD) Molar vol. of STP = 22.4 L

Mol. of gas =
$$\frac{122 \times 10^{-3}}{22.4} = \frac{1}{200}$$
 moles

Molar mass =
$$\frac{0.22}{\frac{1}{200}}$$
 = 44 g mol⁻¹

47.(AC) Number of H atoms in 0.9 $C_6H_{12}O_6 = 12 \times \frac{0.9 \times N_A}{(12 \times 6 + 12 + 6 \times 16) \times N_A} = \frac{3}{50}$

48.(ACD) Hydrogen ${}_{1}^{1}H$, Oxygen ${}_{8}^{16}O$

49.(BC) $(M+0.5) = \frac{xM + y(M+1) + z(M+2)}{z + y + z}$

(B) and (C) option satisfy this equation.

50.(A) $N_A = 1$ mole particles

51.(ABC) In $\text{Ti}_{0.75}\text{O}$. (Min mass % of Ti, Max mass % of O)

% of O =
$$\frac{16}{16 + 48 \times 0.75} \times 100 = 30.8\%$$

% of
$$Ti = 69.2\%$$

In $TiO_{0.69}$ (Min mass % of O) (Max mass % of T_i)

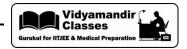
Minimum mass % of O =
$$\frac{16 \times 0.69}{48 + 16 \times 0.69} = 18.7\%$$

52.(BD) Take example of CH_4 and C_2H_6 to show that they don't have same empirical formula.

53.(ABC) Acetic acid: CH₃COOH

Empirical formula = $C_1O_1H_2$

Hence (A), (B) and (C) are correct.


54.(BC) The precipitate formed will be AgCl and AgBr.

:. Group A & C will obtain same mass and Group B & D will obtain same mass.

55.(AB) $2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$

(a) is correct

(b) is correct

- (c) is incorrect since the H₂O formed is liquid instead of gas.
- (d) Is incorrect because not every 3 molecules of H_2 , O_2 mixture will give H_2O unless one of them is O_2 and two of them are H_2 .

56.(ABC)
$$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$$
 ...(i) $(16 \text{ g}) (64 \text{ g}) (44 \text{ g}) (36 \text{ g})$

So,
$$CH_4$$
 used = $\frac{28}{4}g = 7g$

(a) is correct

$$\begin{array}{c} \operatorname{CH_4} + \frac{3}{2} \operatorname{O_2} \longrightarrow & \operatorname{CO} + 2\operatorname{H_2O} \\ (16 \ g) & (48 \ g) & (28 \ g) & (36 \ g) \end{array} \qquad \dots \text{(ii)}$$

Here 8 g CH₄ requires 24 g O₂.

(b) is correct

$$\frac{112}{32} = \frac{28}{8} = \frac{O_2 \text{ given}}{CH_4 \text{ given}}$$

- (C) is also correct.
- (D) can be rejected using (i).

57.(ACD) Oxygen needed =
$$8 \times 4 = 32g$$

(a) Is correct. Similarly, C and D also correct.

58.(ABC)
$$C_x H_y + \left(\frac{x+y}{4}\right) O_2 \to xCO_2 + \frac{y}{2} H_2 O_2$$

For alkanes x = n, y = 2n + 2.

$$\therefore \quad \text{CO}_2 = n \;\; ; \quad \text{H}_2\text{O} = n+1$$

For alkenes, x = n and y = 2n

$$\therefore$$
 $CO_2 = n$; $H_2O = n$

For alkynes, x = n and y = 2n - 2

:
$$CO_2 = n$$
; $H_2O = n - 1$

59.(ABD) Refer to solution of question 207 and proceed in the same manner.

60.(A) NaCl + MCl + AgNO₃
$$\rightarrow$$
 AgCl \times (1-x) 2.567 g

Moles of AgCl = 0.018 moles = Moles of Cl

$$0.018 = \frac{x}{58.5} + \frac{1 - x}{M + 35.5}$$

When salt is heated, NaCl does not decompose but MCl decomposes.

$$\frac{1.341}{143.23} = \frac{1-x}{M+35.5} = 0.0094$$

Solve for x and M

x = 0.5 and M=18g

61.(AB)
$$2H_2 + O_2 \rightarrow 2H_2O(1)$$

In (a) 1 ml H_2 is left after reaction [the water formed is not considered as it will be liquid]

In (b) $1 \text{ ml } O_2$ is left after reaction.

62.(ABCD)

$$2 \, \mathrm{NH_3} \longrightarrow \mathrm{N_{2(g)}} + 3 \mathrm{H_{2(g)}}$$
 itial 170 g 0 0

Initial (10 moles)

10 - 2x

X

Mass of $N_{2(g)} + H_{2(g)}$ produced after electric park = 100g

$$\frac{100}{\stackrel{\circ}{M_{avg}}} = x + 3x = 4x$$

Here
$$M_{avg}^{\circ} = \frac{x(28) + 3x(2)}{4x} = \frac{28 + 6}{4} = \frac{34}{4} = 8.5$$

$$\Rightarrow \frac{100}{8.5} = 4x$$

$$x = \left(\frac{100}{34}\right)$$
 moles

Moles of NH_{3(g)} in the mixture = $10 - \frac{200}{34} = \left(\frac{140}{34}\right)$ moles

Moles of HCl required = $\left(\frac{140}{34}\right)$

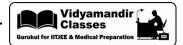
Required minimum molarity = $\frac{140/34}{5} = \frac{140}{5 \times 34} = \frac{140}{170} \text{ M}$

63.(AB)
$$M_1 V_1 = M_2 V_2$$
 \Rightarrow $\frac{40}{M_{A\sigma}} V_1 = \frac{16}{M_{A\sigma}} \times V_2$

$$\frac{5}{2} = \frac{V_2}{V_1} \quad \Rightarrow \quad V_2 = 2.5 \ V_1$$

64.(BD) Molarity of
$$H_2O_2 = \frac{20}{11.2}$$

$$\mathbf{M}_1\mathbf{V}_1 = \mathbf{M}_2\mathbf{V}_2$$


$$\frac{M_1}{M_2} = 2$$

New Volume Strength = $\frac{M_1}{2} \times 11.2 = 10 \text{ Vol.}$

 \Rightarrow 1L of this sol will give 10 ltr of O₂.

 \Rightarrow 2L of this sol will give 20 ltr of O_2 .

i.e. Same as before

65.(ABCD)
$$M(Na^+) = \frac{0.1 \times 1}{2} = 0.05 M$$

$$M(Cl^{-}) = \frac{0.1 \times 1 + 0.1 \times 2 \times 2}{2} = 0.25 \text{ M}$$

$$M(Mg^{2+}) = \frac{2 \times 0.1 + 0.3 \times 4}{2} = 0.7 M$$

$$M(NO_3^-) = \frac{0.3 \times 4 \times 2}{2} = \frac{2.4}{2} = 1.2 \text{ M}$$

66.(BC) Let n_A be number of moles of solute

 $\boldsymbol{n}_{B}^{}$ be the number of moles of solvent

$$\therefore$$
 $n_A = n_B$

Mass of solute = $n_A \times X$

Mass of solvent = $n_B \times Y$

$$\text{Mass percent of solvent} = \frac{m_A}{m_A + m_B} \times 100 \qquad = \frac{n_A X}{n_A X + n_B Y} \times 100 = \left(\frac{X}{X + Y} \times 100\right)\%$$

Similarly, Mass % of solvent = $\left(\frac{Y}{X+Y} \times 100\right)$ %

67.(ABCD)
$$M = \frac{230}{46} \times 1L = 5M$$

$$d = \frac{950}{1} g / L$$
 or 950 kg/m³

$$m = \frac{230}{46} \times \frac{1000}{720} = \frac{500}{72} = 6.94 \text{ m}$$

$$X_{\text{Ethanol}} = \frac{\frac{230}{46}}{\frac{230}{46} + \frac{720}{18}} = \frac{5}{5 + 40} = \frac{5}{45} = 0.11$$

68.(CD) lg-atom of nitrogen = 1 mol N atoms

$$=\frac{1}{2}$$
 mol N₂ gas $=\frac{1}{2}$ mol N₂ gas $=11.2$ L N₂ at STP $=14$ g N₂

69.(AB) 1g molecule $V_2O_5 = 1 \text{ mole } V_2O_5 = 2 \text{ mole V Atom} = 5 \text{ mole O atom}$

70.(BCD)
$$xA + yB \longrightarrow A_xB_y$$

As per equivalent concept

Number of equivalent of A = No. of equivalent of B = No. of equivalent of $A_x B_y$.

71.(BCD) Equivalent of Ba(OH)₂ = $1 \times 2 = 2$

Acids having 2 equivalents will be exactly neutralised by 1 mole of Ba(OH)₂

72.(BD) : Both are liquid, CH₃OH is solute (less amount)

Mass of
$$CH_3OH = 30 \times 0.8 = 24 g$$
,

Mass of
$$C_2H_5OH = 60 \times 0.92 = 55.2 g$$

Mass of solution =
$$24 + 55.2 = 79.2 g$$

Volume of solution =
$$\frac{79.2}{0.88}$$
 = 90 mL

Molarity =
$$\frac{{}^{n}\text{CH}_{3}\text{OH}}{\text{V(L)}} = \frac{24/32}{90} \times 1000 = 8.33 \,\text{mol}\,\text{L}^{-1}$$

Molality =
$$\frac{n_{solute}}{W_{solvent}(kg)} = \frac{24 / 32}{55.2} \times 1000 = 13.59 \text{ m}$$

Mole fraction of solute
$$=$$
 $\frac{\frac{24}{32}}{\frac{24}{32} + \frac{55.2}{46}} = 0.385$

Mole fraction of solvent = 1 - 0.385 = 0.615

- **73.(CD)** Inter relationship of 1M and 1m depends upon M_{solute}° and density of the solution. Vapour density is $\frac{M^{\circ}}{2}$ only if reference gas is $H_{2(g)}$.
- **74.(AB)** (A) 46g of 70% $(W / V)HCOOH(d_{solution} = 1.4 g / mL)$

$$70\%(W/V)HCOOH \longrightarrow 70gHCOOH in 100 mL solution.$$

Mass of solution =
$$1.4 \times 100 = 140g$$

in 46 g, mass of HCOOH =
$$\frac{70}{140} \times 46 = 23g$$

(B) $10 \,\mathrm{M}\,\mathrm{HCOOH} \longrightarrow 10 \,\mathrm{mole}\,\mathrm{HCOOH}$ in $1000 \,\mathrm{mL}$ solution

Mass of solution =
$$1000 g$$

Mass of
$$HCOOH = 10 \times 46 = 460 g$$

So in 50 g solution mass of HCOOH =
$$\frac{460}{1000} \times 50 = 23 \text{ g}$$

(C) 25% (W / W)HCOOH \longrightarrow 25g HCOOH in 100 g solution.

So in 50 g solution, mass of HCOOH =
$$12.5 g$$

(D) 5M HCOOH \rightarrow 5 mole HCOOH in 1000 mL solution So, mass of 1000 mL solution = 1000 g

$$(d = 1 g/mL)$$

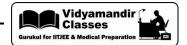
Mass of HCOOH =
$$46 \times 5 = 230 \text{ g}$$

So, in 46 g solution, mass of HCOOH =
$$\frac{230}{1000} \times 46 = 10.58 \text{ g}$$

75.(ACD) $V_{strength} = 28;$

$$M = \frac{28}{11.2} = 2.5$$

∴ 1 L contain 2.5 moles of H_2O_2


or
$$2.5 \times 34 = 85 \,\mathrm{g} \,\mathrm{H}_2 \mathrm{O}_2$$

Mass of 1 litre solution = 265 g

$$(:: d = 265g/L)$$

$$\therefore$$
 W_{H₂O} = 180 g or moles of H₂O = 10 moles

Solution | workbook-1 18 Stoichiometry-l

$$\begin{split} X_{H_2O_2} &= \frac{2.5}{2.5 + 10} = 0.2 \\ \% \frac{w}{v} &= \frac{2.5 \times 34}{1000} \times 100 = 8.5 \\ m &= \frac{2.5}{180} \times 1000 = 13.88 \end{split}$$

 $\textbf{76.(B)} \hspace{1cm} \text{H}_2\text{O} + \text{SO}_3 {\longrightarrow} \text{H}_2\text{SO}_4;$

18 g water combines with 80 g SO_3

: 4.5 g of H₂O combines with 20 g of SO₃

 $\therefore~100~\text{g}$ of oleum contains 20 g of $\,\mathrm{SO}_3$ or 20% free $\,\mathrm{SO}_3$.

77.(C) Initial moles of free SO₃ present in oleum = $\frac{12}{18} = \frac{2}{3}$ moles

= moles of water that can combine with SO₃

Moles of free SO_3 combined with 9g water = $\frac{9}{18} = \frac{1}{2}$ moles

 \therefore moles of free SO₃ left = $\frac{2}{3} - \frac{1}{2} = \frac{1}{6}$ mole

 \therefore volume of free SO₃ at STP = $\frac{1}{6} \times 22.4 = 3.73 L$

78.(C) $\operatorname{Na_2CO_3} + \operatorname{H_2SO_4} \longrightarrow \operatorname{Na_2SO_4} + \operatorname{H_2O} + \operatorname{CO_2}$

moles of CO_2 formed = moles of Na_2CO_3 reacted = $\frac{5.3}{106}$ = 0.05

volume of CO_2 formed at 1 atm pressure and 300 K = 0.05 × 24.63 = 1.23 L

79.(B) eq. of $H_2SO_4 + eq.$ of $SO_3 = eq.$ of NaOH

$$\frac{x}{98} \times 2 + \frac{(1-x) \times 2}{80} = 54 \times 0.4 \times 10^{-3}$$

$$x = 0.74$$

% of free
$$SO_3 = \frac{1 - 0.74}{1} \times 100 = 26\%$$

80.(C) Fe reacts with steam to give $Fe_3O_{4(s)}$ and $H_{2(g)}$

 $\textbf{81.(A)} \quad \mathrm{Ba}_{3}(\mathrm{PO}_{4})_{2(s)} \ + \ 6 \ \mathrm{HCl} \ \longrightarrow \ 3 \ \mathrm{BaCl}_{2(aq)} \ + \ 2 \ \mathrm{H}_{3} \mathrm{PO}_{4(aq)}$

$$\left(\frac{20}{601}\right) \hspace{1cm} \qquad \qquad \qquad \qquad \qquad \Rightarrow \hspace{1cm} V_{HCl} = \frac{120}{601 \times 5} \approx 0.04 \hspace{1cm} L$$

82.(D) $N_{2(g)} + 3H_{2(g)} \longrightarrow 2NH_{3(g)}$

$$\frac{50}{28}$$
 kmoles $\frac{30}{2}$ kmoles

≈ 1.75 kmoles 15 kmoles

(Limiting reagent)

Theoretical moles of $NH_3(g)$ that can be obtained.

 ≈ 3.50 kmoles.

Actual yield = 0.6 [3.5] kmoles = 2.1 kmoles

Mass of $NH_3 = 2.1 \times 17 \text{ kg} = 35.7 \text{ kg}$

83.(C) Na₂CO₃ do not decompose upto 1000°C

84.(A)
$$Cl_2 + 2NaOH \longrightarrow NaCl + NaClO + H_2O$$

$$\frac{3}{1} \times \frac{4}{3} = 4$$
 mole $\leftarrow \frac{4}{3}$ mole

$$4$$
NaClO₃ \longrightarrow 3NaClO₄ + NaCl

$$\frac{4}{3}$$
 mole \times \text{1mole}

Moles of NaClO₄ =
$$\frac{122.5}{122.5}$$
 = 1 mole

$$4 \text{ mol } \text{Cl}_2 = 284 \text{ g Cl}_2 \text{ will be required}$$

85.(C)
$$Cl_2 + 2NaOH \longrightarrow NaCl + NaClO + H_2O$$

$$\begin{array}{c} 3\text{NaClO} \longrightarrow 2\text{NaCl} + \text{NaClO}_3 \\ 1 \text{mole} & \frac{2}{3} = 0.67 \text{ mole} \end{array}$$

$$\begin{array}{ccc} 4\mathrm{NaClO}_3 & \longrightarrow & 3\mathrm{NaClO}_4 + \mathrm{NaCl} \\ \frac{1}{3}\mathrm{mole} & & \frac{1}{4} \times \frac{1}{3} - \frac{1}{12}\mathrm{mole} = 0.083\mathrm{mole} \end{array}$$

Total
$$NaCl = 1 + 0.67 + 0.083 = 1.75 \text{ mole}$$

86.(B) As $NaClO_3$ is intermediate it will be consumed in the complete reaction.

87. $A \rightarrow P, R, S; B \rightarrow P; C \rightarrow P, Q, R; D \rightarrow S$

(A) 0.5 mole of
$$SO_2(g) = 32 g$$

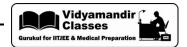
Weight =
$$1.5 N_A$$
 atoms = $11.2 L$ at 1 atm and 273 K

(B)
$$1 g \text{ of } H_2(g) = 0.5 \text{ mole}$$

$$H_2 = 11.2 L$$
 at 1 atm and 273 K = N_A atoms

(C) 0.5 moles of
$$O_3 = 1.5 N_A$$
 atoms = 11.2 L at 1 atm and 273 K = 24 g weight

(D) 1 g molecules of
$$O_2$$
 = 1 mole of O_2 = 2N_A atom = 22.4 L at 1 atm and 273 K = 32 g weight


88.
$$A \rightarrow P, Q, R; B \rightarrow R, S; C \rightarrow P, Q; D \rightarrow P, Q, R, T$$

(A) Moles of
$$CO_2(g) = \frac{44}{44} = 1$$

1 mole $CO_2(g) = 1g - \text{molecule } CO_2(g)$

(B) Moles of
$$CH_4(g) = \frac{35.2}{16} = 2.2$$
 moles

$$V = 2.2 \times 22.4 = 49.28 L$$
 at 1 atm and 273 K

Solution | workbook-1 20 Stoichiometry-I

(C) Moles of
$$O_3(g) = \frac{48}{48} = 1$$

(D) Moles of
$$N_2O(g) = \frac{44}{44} = 1$$

Number of O atoms = $N_A \times 1 = N_A$

89.
$$A \rightarrow P, R; B \rightarrow Q, R; C \rightarrow Q, S; D \rightarrow Q, R$$

Use % by moles =
$$\frac{M_{avg} - M_1}{M_2 - M_1} \times 100$$

% by mass = % by moles $\times \frac{M_2}{M_{avg}}$

90.(D) Molecules Atomicity

4

5

(iii)
$$C_2H_4$$

6

(iv)
$$H_2SO_4$$

7

91.(C) Number of atoms of gold =
$$\frac{39.4 \times 10^3}{197} \times 6.022 \times 10^{23} = 6.022 \times 10^{25}$$

92.(C)
$$\frac{4}{N_A}$$
 mol of $O_2 = \frac{4}{N_A} \times N_A$ molecules of $O_2 = 8$ atoms of O_2

$$\frac{4}{N_A}$$
 mol of $O_2 = \frac{4}{N_A} \times 22.4$ litre at STP = $\frac{89.6}{N_A}$ litre at STP

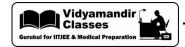
$$\frac{4}{N_A}$$
 moles of $O_2 = \frac{4}{N_A} \times 32$ gm of oxygen = 128 amu of oxygen

93.(A) moles of
$$D_2O = \frac{4}{20}$$

Moles of neutrons in 4 gm $D_2O = \frac{4}{20} \times 10$ total number of neutrons in 4 gm $D_2O = 2N_A$

94.(A)
$$2\text{NaHCO}_3 \xrightarrow{\Delta} \text{Na}_2\text{CO}_3 + \text{CO}_2 + \text{H}_2\text{O}_3$$

Moles of
$$CO_2 = \frac{448}{22400} = 0.02$$


Moles of $\ensuremath{\operatorname{NaHCO_3}}$ will be twice of $\ensuremath{\operatorname{CO_2}}$ that is 0.04

- **95.(B)** 3 moles of $Cl_{2(g)}$ require 6 moles of OH^- which can be produced here by using 500 ml of 12 M KOH solution.
- **96.(A)** Volume occupied by 1 mole of ideal gas at STP = 22.4 lt

$$\Rightarrow$$
 number of moles of H₂ = $\frac{1}{2}$

$$\therefore$$
 volume = $\frac{1}{2} \times 22.4 = 11.2$ lt

Solutions | Workbook-1 21 Stoichiometry-l

97.(BC)
$$3x + 4y \longrightarrow x_3y_4$$
 6 moles

y is liming reagent

 \Rightarrow 6 mole of y = 1.5 moles. of x_3y_4

$$\Rightarrow$$
 1.5 mole of x is left

$$=\frac{1.5}{6}\times100=25\%$$
 is left

98.(D) moles of BaSO₄ =
$$\frac{1.165}{233}$$
 = 0.005

Moles of sulphur = moles of $BaSO_4$

$$= 0.005$$

Mass of sulphur = 0.005×32

$$= 0.160 \text{ gm}$$

% of sulphur by mass =
$$\frac{0.160}{0.5} \times 100 = 32$$

 $kr[Fe(CN)_6] = number of moles of C$

$$6\times nk_4[\text{Fe(CN)}_6] = 12\times {}^{n}\text{C}_{12}\text{H}_{22}\text{OH}$$

$$^{n}C_{12}H_{22}O_{11} = \frac{1}{2} \times \frac{73.6}{368}$$

Mass =
$$\frac{1}{2} \times \frac{73.6}{368} \times 342 = 34.2$$
 in $C_{12}H_{22}O_{11}$

ratio of milimoles of C : H : O =
$$0.033$$
 : $\frac{0.033}{12} \times 22$: $\frac{0.033}{12} \times 11$

$$mass \ of \ \ C_{12}H_{22}O_{11} = 0.033 \times 12 + \frac{0.033 \times 22 \times 1}{12} \times 1 + \frac{0.033 \times 11 \times 16}{12} = \frac{0.033}{12} \Big[12 \times 12 + 22 + 11 \times 16\Big]$$

mass of
$$C_{12}H_{22}O_{11} = 0.94 \text{ mg}$$

100.(4) mass of nitrogen in molecule =
$$\frac{175}{100} \times 32 = 56$$

Number of atoms of nitrogen in one molecule
$$=\frac{56}{14}=4$$

Solution | workbook-1 22 Stoichiometry-I